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A RELATED FUNCTIONAL EQUATION, 

AND SPECIFICATION 

BY 

D. A. LIND 

ABSTRACT 

We prove that a skew product of a measure-preserving transformation with an 
ergodic automorphism of a compact abelian group is always isomorphic to their 
direct product via an isomorphism that merely translates the group fibers. This 
requires solving a functional equation. A weak version of Bowen's specification 
property is essential to our construction of a solution. 

w 1. Introduction 

Skew products with automorphisms of compact groups arise naturally in 

several situations, such as in the study of the structure of group automorphisms 

[7] and automorphisms of nilmanifolds [9]. In an earlier paper [7] we showed 

that skew products with ergodic group automorphisms automatically split into 

direct products. The proof used Thouvenot 's relative isomorphism theory, and 

yielded mappings of the group fibers that were merely measure-preserving 

transformations. Demanding that they be group translations amounts to solving 

a certain functional equation. We had previously done this for group shifts [7, 

w and toral autornorphisms (using a Neumann series argument due to Parry). 

Using a different approach here, we solve the functional equation for ergodic 

automorphisms of a general compact abelian group. Indeed, general solvability 

is equivalent to ergodicity of the automorphism. A weak version of Bowen's 

specification property plays a key role. 

One application of our solution is probably the simplest proof that ergodic 

toral automorphisms are Bernoulli (see w Another is that ergodic afline 

transformations are loosely Bernoulli (to appear). It yields a simple proof for 

compact abelian groups of the characterization of Conze [3] of the Pinsker 

Received June 2, 1977 

236 



Vol. 30, 1978 SKEW PRODUCT -- FUNCTIONAL EQUATION 237 

algebra of an ergodic affine transformation (for more details, see [7, theor. 9.2]). 

The Addition Theorem for the entropy of skew products also follows easily [11]. 

In his thesis [8], Marcuard proved that skew products with ergodic automor- 

phisms of a torus measure-theoretically split by obtaining a translation-invariant 

version of Katznelson's proof [6], and applying Thouvenot's theory. Our proof 

here for the torus differs from both Marcuard's and from our previous proof 

[7, w 

Using a relativized isomorphism theorem for measure-preserving actions of 

the product of the integers with a compact group, Dan Rudolph (oral communi- 

cation) has indicated another way to solve the functional equation. 

w 2. Splitting skew products 

Let U be an invertible measure-preserving transformation (hereafter short- 

ened to "map") acting on a Lebesgue measure space (X,/z). Let G be a 

separable compact abelian group equipped with the Borel o--algebra and Haar 

measure, and S be a (continuous, algebraic) automorphism of G. Let ot : X ~ G 

be measurable. Since both S and translations preserve Haar measure, the map 

U x , S  of the Lebesgue space X x G  defined by (UxaS)(x,g)= 
(Ux, Sg+et(x)) is measurable and preserves the product of /~ with Haar 

measure. Call U x .  S the skew product of U with S with skewing function a. 

Suppose there is an isomorphism W of Uxo S with the direct product U x S 

having the form W(x, g) = (x, g +/3(x)), where/3 : X  ~ G is measurable. Then 

say that the skew product Ux,  S algebraically splits (to distinguish this from the 
purely measure-theoretic splitting in [7]). 

The relation (U x.  S)W = W(U x S) is equivalent to the functional equation 

(2.1) a(x)= S#(x). 

The algebraic splitting of Ux,,S is thus equivalent to solving (2.1), where a, U, 

and S are given, and/3 is to be found. Our main result is that for ergodic S, (2.1) 

can always be solved. 

SPLITYING THEOREM. Skew products with ergodic automorphisms of compact 
abelian groups algebraically split. 

If every skew product with S algebraically splits, we shall say that S skew splits. 
Our proof briefly runs as follows. After quickly disposing of the case when X 

is atomic, we introduce in w a property of group automorphisms called weak 

specification which we show is sufficient for skew splitting. The structure theory 
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for group automorphisms in [7] shows that a general ergodic group automor- 

phism can be built up from two kinds of basic automorphisms, p-shifts and 

irreducible solenoidal automorphisms, by using products, factors, inverse limits, 

and skew products with basic automorphisms. Weak specification is preserved 

under products, factors, and inverse limits. Unfortunately, it does not seem to 

extend under skew products, and it is unknown whether all ergodic group 

automorphisms obey weak specification. We show in w that skew splitting is 

preserved under products, factors, certain kinds of inverse limits, and skew 

products with skew split automorphisms. The basic group automorphisms are 

shown in w 6 to obey weak specification. Finally, in w 7 these pieces are assembled 

with a judicious sequence of operations on the basic automorphisms, including 

two techniques for handling inverse limits. 

The topological analogue of the Splitting Theorem fails. That is, if X is also a 

compact metric space, U a homeomorphism, and a : X---, G is continuous, it is 

not always possible to find a continuous solution /3 to (2.1), as the following 

example shows. Let S be an ergodic automorphism of the two-dimensional torus 

T 2, X = G = T 2, U = S, and a be the identity mapping o n  T 2. Then S x,, S is the 

automorphism of T' with matrix 

S I 
( 0  S ) '  

where I is the 2 x 2 identity matrix. If there were a continuous solution 
/3 : T2---~ T 2 of (2.1), then S x ~ S  would be topologically conjugate to S x S. By a 

theorem of Adler and Palais [1], these automorphisms would be conjugate by a 

group automorphism. However, the matrices corresponding to S xa S and S x S 

have different Jordan forms, so could not be similar. 

Under the action of an arbitrary map, a measure space decomposes into 

periodic parts and an aperiodic part. Solvability of (2.1) on the periodic parts 

follows easily from w 3. After w 3, we will confine ourselves to the case when U is 

aperiodic. 

w Finite bases 

We show here that if X is finite, U is a cyclic permutation, and S is ergodic, 

then U x a S  algebraically splits. 

Suppose that X = {x,, x2, �9 �9 ", x,}, and Uxl  = x~.~, where subscripts are taken 

mod n. The functional equation (2.1) becomes n equations 

(3.1) a(x,)=/3(x,+,)-S/3(x,)  (i = 1 ,2 , . . . ,n ) .  
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Multiplying the ith equation by Sn-, and adding gives 

(3 .2)  S n - I  o~(Xl)-~ - Sn-2  ot (x2)-'~ . . "  --~ S{21~(Xn-l) "3L o~(xa) = f l ( X l ) -  Sn/3 (Xl). 

To prove there is a /3(xi) satisfying (3.2) we use the following result. 

LEMMA 3.1. A n  automorphism S of a compact abelian group G is ergodic if 

and only if (I - S " ) G  = G for all n >-_ 1. 

PROOF. Let F be the dual group of G, and T the automorphism of F dual to 

S. Since $ is ergodic if and only if T is aperiodic (i.e. the only character periodic 

under T is 0) [5, p. 53], we have that S is ergodic iff T is aperiodic iff I - T" is 

injective on F for all n => 1 iff I -  S" is surjective on G for all n => 1. 

Hence there is a /3(x0 in G satisfying (3.2). The value /3(x,) (2= < i =< n) is 

defined inductively from (3.I); (3.2) guarantees that/3(x~+1) coincides with the 

original value/3(x0.  

Notice that Lemma 3.1 shows that if S is not ergodic, it cannot be skew split. 

For if S is not ergodic, there is an n => 1 for which ( I - $ " ) G ~  G. Let 

X = {x~,...,  x,}, Ux, = x,+~, and a(x,)  = 0 (1 =< i =< n - 1), a(x~) E G \ ( I  - S")G.  

Then (3.2) cannot be solved for/3 (x~), so that U x ,  S does not algebraically split. 

Essentially the same example works for any map U with an nth root of unity in 

its spectrum. 

From now on X will denote a nonatomic Lebesgue space, and U will be an 

aperiodic map of X. 

w 4. Weak specification 

A property that we will use to solve the functional equation (2.1) is the 

following. 

DEFINrnON. A homeomorphism f of a compact metric space (Y, d) satisfies 

weak specification if for every e > 0 there is an integer M ( e )  such that for every 

r _-> 2 and r points y~, �9 �9 y, in Y, and for every set of integers al =< bl < a2 --< b2 < 

�9 . .<a ,=<b,  with a, -b~_l>=M(e)  (2=<i_-r) ,  there is a y E Y  with 

d( f~y , f~y , )<  e for a, =< n =< b~, l =< i <= r. 

This means that given specified pieces {/'y~ : a, =< n =< b,} of orbits of different 

points at different times, if there is enough time delay, then these pieces can be 

well approximated by the same pieces of the orbit of a single point. This is 

weaker than Bowen's property "specification" ([2] or [4, definition 21.1]) in that 

y is not required to be periodic. Weak specification was used by Ruelle [10] in 
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studying the statistical mechanics of lattice actions. Warning: our definition of 

weak specification is not the same as in [4]. 

Weak specification is clearly preserved under direct products and homomor- 

phic images. The following shows that for group automorphisms it is also 

preserved under inverse limits. 

From now on, all groups will be abelian and separable, and all subgroups 

closed. 

If S is an automorphism of G and H is an S-invariant subgroup, let S6m 

denote the factor automorphism on G/H. 

LEMMA 4.1. Suppose that S is an automorphism of the compact abelian group 

G, and that {H~} is a decreasing sequence of S-invariant subgroups of G with 

("l~ Hk = O. If  S o/nk satisfies weak specification for every k >= 1, then so does S. 

PROOF. Since G is compact, there is a translation invariant metric d on G, 

and we may assume that G/H~ is equipped with the quotient metric dk. Thus if 

Ir~ : G --* G/Hk denotes the projection, then ~rk contracts. 

Let e > 0 .  Choose k so that diamHk < e / 2 .  Since Samk satisfies weak 

specification, let M(e)  be the integer given for S~/m with respect to e/2. 

Suppose now that r => 2, that g~,- �9 g, E G, and that a~ _-< bl < �9 �9 �9 < a, < b, 

with a~ - b~_~ >-_ M(e). By our choice of M(e), there is a g + Hk in G/H~ with 

dk(S'g +H~,S'g~ + H k ) <  e/2 for a~ < n < b~, 1 -< i _-< r. Since diam H~ < e/2, it 

follows that d(Sng, Sng~)< e for the same n and i. 

The following shows how to use weak specification to solve the functional 

equation. 

Tm~OREM 4.2. Group automorphisms satisfying weak specifications are skew 
split. 

PROOF. Let G be a compact abelian group with translation invariant metric 

d. Let S be an automorphism of G satisfying weak specification. To show that S 

skew splits, suppose that U is an aperiodic/. t-measure-preserving transforma- 

tion of X, and that a :X- -*G is measurable. We will solve (2.1) as follows. 

Using a Rohlin stack, we will produce a/3~ defined on most of X for which (2.1) 

holds. Using a much longer Rohlin stack together with weak specification, we 

will modify/3~ by a uniformly small amount and extend its domain of definition, 

forming a new function/35 defined on more of X satisfying (2.1). Continuing, we 

will produce a sequence/3k of functions that obey (2.1) on an increasing amount 

of X, and which converge almost uniformly. The/3~ will converge to the required 

solution /3. 



Vol. 30, 1978 SKEW P R O D U C T  - -  F U N C T I O N A L  E Q U A T I O N  241 

Let  {ek } be a decreas ing  sequence  of posi t ive number s  such that  El* rE < ~.  Let  

M ( e )  come  f rom weak  specification of S, hE >3M(eE)/eE, and FE be a 

measu rab le  set such that  {U'FE :0 =< i < hE} is disjoint.  It is easy to a r range  the hE 

and FE such that  if EE = t . /{U'Fk : 0 =  i < hE}, then EE CEk+~, / z ( E E ) >  1 -  eE, 

and 

(4.1) [ U { U ' F E : - M ( e E ) < = i < O ,  hE<=i<=hk + M ( e E ) } ] f q E E = O .  

T h e  last condi t ion means  that  there  is enough  gap  be tween  the occur rences  of EE 

on an orbi t  to apply weak  specification. Let  EE = EE \ U h--~ FE. 

Define/31 arbi trar i ly but  measu rab ly  on FI. Ex t end  its definit ion to UF~ using 

(2.1), 

t31(Ux)= stJl(x)+~(x) (x ~FO. 

Similarly,  on UZFI we let 

tJ, (U2x) = s~, (Ux) + ~(Ux) 

= s2[Jl(x)+ Sa(x)+ a(Ux). 

Induct ively we obtain  that  

/3,(U'x) = s'/3,(x)+ a, (x) (x ~ F,,O<-_/ < h,) 

where  
j - I  

,~j(x)= Y~ s ' - ' - ' ~ ( U ' x ) .  
m--O 

This defines /31 on El ,  and /31 satisfies (2.1) for  x ~/~1.  

If f : EE ~ G, define IIfIIE, = sup{d(O, f (x  )): x E EE }. 

Suppose  now that  we have  def ined /31, ' ' ' , /3E-1 such that  /3j : E s ~  G, [3s 

satisfies (2.1) on/~j,  and lift, -/3s-lllE,-, < e, (1 =<j < k) .  W e  define/3E :EE ~ G as 

follows. Since only finite condi t ions  are involved,  it will be  clear  that  /3E is 

measurab le .  

Fix x E FE. Let  al < �9 �9 �9 < a, be  the ent ry  t imes of x into FE-1, i.e. U"x E FE-1 

with 0 =< n < hE iff n = a,. Let  b, = a, + hE-t - 1. By condi t ion (4.1), a, - b~-i --> 

M(eE). 

Now/3E-~ is a l ready defined on {U"x : a~ <-_- n <= b, 1 <= i <= r}. Suppose  we were  

to define [3~(x) = go, and use (2.1) to ex t end /3~  to {U"x : 0 =  < n < hE}. We  will 

show that  the e r ror  between/3E-1 and /3~  on each block {U"x : a~ _~ n <- b,} is a 

p iece  of orbit .  W e  will then use weak  specification to adjust  the initial value go to 

c o m p e n s a t e  for  this e r ro r  to within a uni formly  small  amoun t .  
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Since t ; , (x)  = go, we have that for 0 = < / <  hk-,, 

t ~ ( U * ' + J x )  = S"+Jgo+  a~ (1 _-< i _--< r). 

However, by definition, 

t k _ , ( u ' , + J x )  = sJ t k_~(U~  aj ( U ' , x ) .  

An easy computation shows that 

a ~247  - a j ( U ~  = S'a~ (x).  

Hence 

i '~ (u~247 - t k - , ( U ~  = S j [S"g0  - i k - , ( U " x ) +  -o, (x)].  

Since the bracketed expression is independent of j, the error on {U"x:  

a, < n _-< b, } is a piece of an orbit of a point, different points for different i. By 

weak specification, there is a g~ E G such that 

d(S~ S j [S~ ilk-, (U* 'x)+ a,~ (x)] < ek 

for 0 _-<j < hk-~, 1 <= i <= r. Define the modified solution tK(X ) = t'~(X )-- g~. Then 

t k  ( U n x )  = t ; ( U " x ) -  Sngl, and so by translation invariance of d, 

a ( tk  ( u~ x ), tk_,(  u~ x ) ) = a ( t  ~( uo,+, x ) - Ik_,(u',+Jx), so,+j g 0 

< 8k. 

Thus we have defined tk on Ek satisfying (2.1) on /~k and such that 

I l tk - t k - ,  l IE , ,  < ~k. 

It follows that for every k, {fl, : r > k } is uniformly Cauchy on Ek, and hence 

converges to a function t on Ek satisfying (2.1) on /~k. Since the/~k increase to 

almost all of X, fl = lim flk is defined almost everywhere and satisfies (2.1). 

w Lifting solutions 

The main difficulty in proving the Splitting Theorem for general automor- 

phisms is that it is not always possible to lift solutions mapping into quotients. In 

this section we explain this remark, and show that such liftings are possible under 

some circumstances. This is used to show that skew splitting is preserved under 

some kinds of inverse limits. 

The first result is that skew splitting is preserved under taking factor 

automorphisms. 
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LEMMA 5.1. Suppose that S is an automorphism of G, and that H is an 

S-invariant subgroup. I f  S is skew split, then so is SGm. 

PROOF. Suppose that a : X ~ G / H .  Using a Borel cross-section to the 

quotient map ~r : G--~ G/H,  find a lifting & :X---~ G of a such that It& = a. 

Since S skew splits, there is a /3: X - *  G such that t i ( x ) =  ~ ( U x ) - S ~ ( x ) .  

Applying lr shows that /3 = ~r/~ is a solution for a. 

The converse of Lemma 5.1 would be very convenient, that is, skew splitting 

of So/H implies that of S. In the above notation, we would like solutions 

/3 : X --* G / H  to lift to solutions/3 : X --~ G such that rr/3 =/3. A later example 

shows that this is not always possible. However, if the restriction Sn of S to H is 

also skew split, then solutions can be lifted. 

LEMMA 5.2. I f  H is an S-invariant subgroup of G such that both Sn and S ~/n 

are skew split, then so is S. 

PROOF. Let U be an aperiodic map of X, and a : X - * G .  Then 

Ira : X - * G / H .  Since Sore skew splits, there is a / 3 ~ : X - - ~ G / H  such that 

z r a ( x ) = / 3 t ( U x ) - S ~ m / 3 1 ( x ) .  Let f l ~ : X - - * G  such that zr/3~=/31. Then 

~t (x) -  [/31(Ux)- S/31(x)] is in H. Since S ,  skew splits, there is a/32: X --* G such 

that a ( x ) -  [/31(Ux)- S/3~(x)] = /32(Ux)-  S/32(x). Hence /3 =/3~ +/32 solves 

(2.1). 

Unfortunately, it seems unknown whether Lemma 5.2 remains true if skew 

splitting is replaced by weak specification. If weak specification of SH and SGm 

were enough to conclude that of S, our proof would be much shorter. 

We can use Lemma 5.2 to show that skew splitting is preserved under certain 

kinds of inverse limits. 

LEMMA 5.3. Let S be an automorphism of G, and {Hn} be a decreasing 

sequence of S-invariant subgroups with Ho = G and f ' )oH,  = O. Suppose that 

S ~m.~, skew splits for n >- O. Then S skew splits. 

PROOF. For m > n, let rr,~, : G/H, ,  --~ G / H ,  be the quotient map with kernel 

H,/H,, ,  and let rr, : G --~ G/Hn. 

Let U be an aperiodic map of X, and 0t : X --~ G. Since S G/,, skew splits, there 

is a/31 :X  --~ G/H~ such that Ir ,a(x)  = /3~(Ux) -  Som~/31(x). Since Sn,m~ skew 

splits, there is by the proof of Lemma 5.2 a /3 : :X--~  G/H2 such that Ir2ct(x)= 

f l 2 (Ux) -  S~m:/32(x) and ~'2~/32 =/31. Continuing inductively, for n _-> 1 we obtain 

ft, :X---~ G / H ,  such that 7r, a ( x )  = / 3 , ( U x ) -  Som. /3 . (x)  and rr,,,/3,, =/3, for 

m > n. Since fq/4, = 0, the group G is the inverse limit of the system ({G/H,} ,  

{It,. }). Hence {/3,} defines a function /3:X---~ G satisfying (2.1). 
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Can Lemma 5.2 be true without the assumption that S,~ skew splits? That is, if 

rra : X ---, G / H  has a solution/3 : X ---, G / H  as in the proof of Lemma 5.2, is it 
always possible to lift/3 to a solution ~ for a ? The following is a simple example 

to show that such liftings do not always exist. The basic problem is that SH need 

not be ergodic. Such situations are handled in our proof of the Splitting Theorem 

by using weak specification. 

Suppose that H = {0, h}, so that Sh = h (this can be achieved for a toral 

automorphism). Let a (x )  = h for all x, so that zra(x) = 0 in G / H .  Let /3(x)  = 0 

for all x. If there were a /3 :  X ---* G with ~r/3 =/3, and/3 a solution of (2.1) for a, 

then /3(x) would be in H for all x, and h = a ( x )  = f 3 ( U x ) -  f3(x). Considered 

multiplicatively, this means that/3 is an eigenfunction of U with eigenvalue - 1. 

Thus if U is for example weakly mixing, then/3 cannot be lifted to a solution/3. 

However, observe the following consequence of the proof of Theorem 4.2. 

Suppose that/3 is a solution for zra. Let FI be the first Rohlin base, and def ine/~ 

on F, so that zr/31(x)=/3(x). If ~1 is extended to E~ via (2.1), then 1r/3, agrees 

with /3 on Et. The proof shows that /3t can be modified by an arbitrarily small 

amount and extended to a solution/3 on all of X. Then zr/3 is close to/3 on E~, 

i.e. /3 can be modified by an arbitrarily small amount to a solution ~r/3 which 

does lift. Thus, under the hypotheses of Lemma 5.3, by successively modifying 

and lifting, we could solve (2.1) on G. However, it is cleaner to use Lemma 4.1 to 

handle these inverse limits. 

w 6. Weak specification for basic group automorphisms 

We prove here that group shifts and irreducible solenoidal automorphisms 

obey weak specification. These facts together with the preceding material will be 

assembled in w 7 to a proof of the Splitting Theorem for general automorphisms. 

As we will show in another paper, some ergodic group automorphisms, 

including all toral automorphisms with shearing in the central direction, do not 

satisfy weak specification. Thus Theorem 4.2 by itself will not prove the Splitting 

Theorem, and our extra work is necessary. 

Let Go be a compact abelian group, and G~ be a copy of Go for each i. Let 

G = 1-I7| G~ and S denote the shift on G. The group automorphism S is called 

the group shift on Go. 

LEMMA 6.1. Group shifts satisfy weak specification. 

PROOF. See proposition 21.2 of (4). 

REMARK. By Lemma 4.2, group shifts are also skew split. This is easy to 

check directly; see theorem 3.1 of [7]. 



Vol. 30, 1978 SKEW PRODUCT - -  FUNCTIONAL EQUATION 245 

We now turn to tori and solenoids. We first show that toral automorphisms 

with irreducible characteristic polynomial satisfy weak specification. We do this 

because the geometry involved is clearer for tori than solenoids, and also 

because the result is of independent  interest in obtaining an efficient proof  that 

ergodic toral automorphisms are Bernoulli. 

We begin by describing some of the geometry of toral automorphisms as 

developed in [7]. Next we establish a uniform distribution statement  adapted for 

our purposes, and then state and prove the toral result. 

Let T ~ =  R~/Z ~ denote the d-dimensional  torus, written additively, and 

7r : R ~ ---} T d be the natural quotient map. An automorphism S of T ~ is induced 

by a linear isomorphism S of R u such that vrS = S. The characteristic polynomial 

of S is that of ,~. This polynomial is said to be irreducible if it is irreducible over  

the rationals. Recall that S is ergodic if and only if its characteristic polynomial 

has no zeros that are roots of unity [5, p. 55]. 

Suppose that S is an ergodic toral automorphism with irreducible characteris- 

tic polynomial. The eigenvalues of S are therefore nonrepeated.  Let E~ denote 

the eigenspace in R d corresponding to ;t and ,(. Then dim E~ is 1 or 2 depending 

on whether  )t is real or not. It is convenient to make the convention that sums 

and products indexed by the eigenvalues )t are over  only those )t whose 

imaginary part is nonnegative. 

There is a metric on each E~ for which S multiplies distances by I;t I, and we 

give R d =  ~ E ~  the metric that is the supremum over the component  E~ 

metrics. This metric is translation invariant, and hence projects under ~r to one 

on T ~. All distances in R d and T ~ will be taken with respect to these metrics. 

Also, there are Haar  measures to and to~ on R a and E~ such that to = 1-I~ to~, and 

normalized so that locally 7rto is Haar  measure on T d. We let B~ (r) be the image 

in T u under ~" of the ball in E~ around 0 of radius r. Let B, (r) = ~ , ~ ,  B~ (r) and 

B, ( r ) =  ~,~p>~ B~ (r) be the balls in T ~ in the weakly stable and the unstable 

directions. Since S has irreducible characteristic polynomial, 7r is injective on 

~),~,~1 to~. Let to, be the image under lr of II,~,~, to~. Then to,(Bs(r)) < ~ for all r. 

The uniform distribution statement we need is contained in the following 

result. 

LEMMA 6.2. Let e < 0 .  There is an M ( e )  such that [or every m >=M(e), 

tl E T ~, t2 E T ~, and n > O, i[ we set D = ~)~,~>~ B~ (r~ ), then 

(6.1) S " ( t ,  + B . ( e  ) ) n  (t2 + B, (e  ) (~  D ) 

contains a translate u + D of D with u ~ t2 + B , (e  ). 
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PROOF. We refer  the reader  to [7] for unexplained terminology used here. 

If v is a measure on T d, say that ~, is e-uniformly distributed in A C T  ~ if 

I v(A)/I A I -  11< e, where IA I denotes the Haar  measure of A. A set (such as 

B,(e)) carrying a natural measure (such as to,) is e-uniformly distributed in A if 

the corresponding measure is. 

Since each E,  contains an irrational vector [7, lemma 4.3], it follows by using 

Weyl 's  theorem and exactly the same techniques as in [7, w that there is an 

M(e) such that for all m _-> M(e ) ,  every translate of SmB,(e) is e-uniformly 

distributed in t2 + B , ( e )~  D. Furthermore,  by using the same estimates on the 

measure of points exponentially close to the boundary of B. (e), it follows that 
most of the intersection of any translate of S ~'B~ (e)  with t2 + B, (e)  ~) D consists 

of entire sheets of the form u + D, where u E t2 + B,(e). This proves the result. 

THEOREM 6.3. Ergodic toral automorphisms with irreducible characteristic 
polynomial satisfy weak specification. 

PROOF. Suppose we are given e > 0, and let M(e) be supplied by Lemma  6.2. 

Let t~, �9 �9 t, E T ~ and a~ _-< b, < �9 �9 �9 < a, _-< b, such that a~ - b~_~ > M(e). Denote  

b,-a,  by d,, and put D,=~),~I>~B~(e!AI-d,), C~=t,+B~(e)~)D,. Since S 

expands distances in E~ by lit I, it follows that 

(6.2) diam SiC, < e (O<=j<=d,,l<=i<=r). 

Hence the orbit of any point in the "target  set" C, will be within e of the orbit of 

t~ under the first d, iterates of S. Note also that Sd'D, = B, (e ) ,  so that if 

F CB, (e ) ,  

(6.3) SU' (t~ + F ~ )  D,)  = Sd' t  +SCF~Bu(e) .  

Let ul = tl. By Lemma  6.2, since a 2 -  b~ _-> M(e) ,  the intersection 

Sa2--al(ul + D t ) N  C2 = [sa2-bl(Sdl Ul + B~ (e))] ~~ C2 

contains u2+ D2 for some u2~  t2+ B,(e) .  Another  application of Lemma  6.2 

shows that since a3 - b2 _--- M(e) ,  

S',-~ P~)n C~= [S~ B~(e))] n C~ 

contains u3 + D3 for some u3 E t3 + B,(e) .  Hence  repeated application of Lemma  

6.2 yields u~ ~ t, + B,(E) with 

[S*'§ + D,)] n C,+, D u,., + D,§ (1 =< i =< r - 1). 

Hence 
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u, + D~ ~ S-t~ + D~) 3 " . .  ~ S-t~176 + D,).  

Choose an element u from the last term, and let t = S -~ It follows that 

S~ ~ C,  and hence from (6.2) that 

d ( S ~ t , S " t , ) < e  (a ,<=n<-b, , l<=i<-r) .  

Theorem 6.3 can be used to obtain what is probably the most e lementary 

proof that ergodic toral automorphisms are isomorphic to Bernoulli shifts. Some 

simple linear algebra, spelled out in [7, w shows that a general toral 

automorphism is a finite-to-one factor of one that is built up from automor-  

phisms with irreducible characteristic polynomials using products and skew 

products. The Ornstein-Weiss  geometr ic  technique works on each of these irre- 

ducible components ,  and the skew products are the same as direct products by 

the Splitting Theorem.  The original automorphism is therefore a finite factor of a 

product of Bernoulli shifts, and is therefore Bernoulli. This method avoids the 

diophantine approximation arguments  used by Katznelson [6] to handle the case 

of repeated eigenvalues of modulus 1. 

We now proceed to solenoids. We begin by recalling from [7] some basic 

information about them. 

A solenoid is a compact  abelian group G whose dual group F is a finite rank, 

torsion-free abelian group. By taking the tensor product of F with the rationals 

Q, this amounts to saying that a solenoid is a group whose dual can be embedded  

as a subgroup of full rank in Q~ for some d. An automorphism S of a solenoid G 

has a dual automorphism T of F' that uniquely extends to a rational vector space 

isomorphism of Qd. The solenoidal automorphism S is irreducible if the 

characteristic polynomial p ( x )  of the linear map T is irreducible over  Q, and if 

there is an element 3' E F such that the group generated by {T '~  : i E Z} is all of 

F. In this case let A be the group generated by {% T,/,. �9 T ~-1 ~/}, where d is the 

degree of p(x ) .  Then A is a lattice of full rank in F, but is not T-invariant unless 

S is a toral automorphism, and then A = F. We assume from now on that A ~ F. 

It follows from irreducibility of p ( x )  that F is then dense in R ~ in the usual 

topology. 

There is a natural embedding ~o : R ~ ~ G of a d -pa ramete r  subgroup in G 

defined for t = (t,, �9 �9 td) E R d on an element ~ = at~/+ a2T , /+  �9 �9 �9 + aaT ~-~ ~, 

where a, E Q, by 

~0 (t)(~) = exp2zr i ( t ,a ,  + . . .  + taad). 

Then ~0 is injective since F is dense in R ~. 
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The Q-linear map T on F extends to one on R d. With respect to the basis 

{ % . . . ,  T d-' y}, T has matrix C(p) ,  the companion matrix of p(x). Let S be the 

transpose of C(p) .  Then it is easy to check that ~o(St) = S~(t). For eigenvalues A 

of S we define the subspaces Ex, measures w~, and metrics on the E~ as in the 

toral case. We retain the convention that operations indexed over  A are only 

over those A with Im A => 0. Let B~ (r) C G be the image under ~0 of the ball in E~ 

of radius r, and B,(r) = ~),~1~1B~(r), B,(r) = ~),~:>, B~(r). 

Let H = A l, the annihilator of A. The dual of G / H  is then A ---- Z ~, so that we 

may identify G / H  with T a. The projection I r : G  ~ G / H  = T ~ is dual to the 

inclusion A CF. Then the map zr~o : R d ~ G / H  = T d is, with our identifications, 

just the quotient map Ra--* R~/A. 
The crux of the proof  in [7] that irreducible solenoidal automorphisms are 

Bernoulli is a certain kind of independence in the totally disconnected subgroup 

H which originates in an algebraic analogue of the stable and unstable 

subspaces. 

For m < n ,  let H ( m , n ) = n ~ . m S ' H .  If m=>0, put H ( m ) = H ( O , m )  and 

H ( - m ) =  H ( - m , 0 ) ,  so that H ( m , n ) =  S m H ( n -  m). Using irreducibility of 

p(x)  together with Gauss '  Lemma,  we showed in [7, lemma 5.2] that for 

m, n _-> 0, the subgroups H (  - m )  and H(n)  are independent subsets of H whose 

measure is positive with respect to Haar  measure /.t, on H. Independence of 

pairs of cosets H ( -  m ) +  h, and H ( n ) +  h2 for h~ E H is immediate.  An easy 

consequence of this independence is that for all h,, h2 E H and all m < n < p < 

q, we have that 

/z,  [ (H(m,  n) + h~) n (H(p,  q) + h2)] > 0. 

Since 3' generates under T, H ( - m ,  n ) ~ 0  as m, n ~ 0% so that 

diamH(-m,n)- - -~O as m,n--.oo. 

We first prove a result to handle the case when some eigenvalue has modulus 

greater  than 1. 

LEMMA 6.4. Suppose that some eigenvalue of S has modulus greater than 1. 

Let e > 0 and choose k > 0 such that diam H (  - k, k ) < e. There is an M (e ) such 

that [or every m >>-M(e), g ,E G, g2E G, n > 0 ,  p > 0 ,  r~ > 0 ,  i[ we let D = 

~,~1>, B~(r~), then 

S m (gl+ B , ( e ) ~ H ( -  k,k  + n ) ) n  (g2+ B , ( e ) O D  ~ H ( -  k - p , k ) )  

contains a subset o[ the form [2 + D. 
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PROOF. Let /~ ,  (e) be the ball in E.  = (~l~r>, EA of radius e. Since S " B ,  (e)  = 

~(S'~B,(e)), the latter is the image of a large ball in E,. Now E,  contains an 

irrational vector [7, lemma 4.3], so that it follows from Weyrs  theorem and the 

same estimates about the measure of points exponentially close to the boundary 

of B~,(e) that there is an M ( e ) > 2 k  such that for every m->_M(e),  g , ~ G ,  

g2 E G, and D = @t~l>t B~ (r,) with r~ > O, the intersection 

S"(g,  + B. (e ) )  O (g~+ B,(e ) (~ D (~ H) 

consists mostly of "unstable sheets", i.e. translates of D. Let f + D be one of 

them. 

Let n, p > 0. There  is an h ~ H such that 

f E  g2+ e , ( e ) @ ( H ( -  k - p , k ) +  h). 

Then 

S ~ (gl + B, (e)  (~) H ( -  k, k + n)) n (g: + B, ( e ) @  D @ H ( -  k - p, k)) 

D([+ D @S'~H( - k ,k  + n ) ) N ( f +  D ( ~ ( H ( -  k - p , k ) + h ) )  

D f + D + [ H ( -  k + m,k  + n + m ) n  ( H ( -  k - p , k ) +  h)]. 

Since m > 2 k ,  we have - k - p < k < - k + m < - k + n + m .  Hence the 

bracketed intersection in the last expression is a finite nonempty union of cosets 

of H ( - k - p , k + n + m ) .  Let f l + H ( - k - p , k + n + m )  be one of them. 

Putting f2 = f + fl finishes the proof. 

THEOREM 6.5. Irreducible solenoidal automorphisms satisfy weak specifica- 
tion. 

PROOF. The proof parallels that for the torus, except that the exceptional 

case when all eigenvalues are of modulus 1 must be handled separately. 

So we first assume that not all of the eigenvalues of S have modulus 1. It is 

easy to check that if weak specification holds for S, then it also holds for S -1. 

Thus by replacing S with S -1 if necessary, we may assume that IAI> 1 for 

some A. 

Let e > 0 ,  and choose k such that diam H ( -  k, k ) <  e. Let M(e)  be given by 

Lemma 6.4. Let gt, �9 �9 ", g, E G and at --< bt < �9 �9 �9 < a, _-< b, such that a, - b~-t --> 

M(e). Denote  b , - a ,  by d~, and put D,=@I~,>tB~(~IAI-~'), (7,= 

gi + B , (e )@ D~ @ H ( -  k - d,, k). By our construction, 

(6.4) diam S~C, < e (0 <- j <-- d,, 1 <= i <= r). 
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Also, analogous to (6.3), we have that if f E g, + B,(e) ,  then 

S', ([ + D, ~) H ( -  k - d~, k ))= S" f  + B, (e )~D H ( -  k, k + d~ ). 

Let fl = g,. Since as-  bl >= M(e), by Lemma 6.4, the intersection 

[S*,-*' (/a + O,  ~ H ( -  k - d,, k))l n C2 

= + (e) k, k + d,)] n 

contains f2 + D2 E) H ( -  k - d2, k + a 2 -  a,) for some [z. Applying Lemma 6.4 

inductively as in the proof of the previous theorem, we obtain elements f, such 

that 

S* '" -* '~  + D, (~ H (  - k - d,, k + a, - a,)) fq C,+, 

=S"*,-',[Sd'f, + B . ( e ) ~ H ( - k , k  +b, - a,)] N C,§ 

Df~+, + D ,§  k - d~.,, k + a,+,- a,). 

Let 

g'~S-t*,-*,~(f, + D , ~ ) H ( - k  -d , , k  +a,-a~)), 

and put g = S-qog ". It follows that S~ E C, for 1 _-< i ~_ r. Hence by (6.4), 

s(S 'g,S 'g,)<e for a, =<n =<b,, l_-<i ~ r .  

We complete the proof by treating the case when all eigenvalues of S have 

modulus 1. In this case, let B ( e )  denote the image under ~p of the e-ball in R d. 

Since S is an isometry, SB (e)= B (e). The mixing behavior obtained before by 

using the geometry of stable and unstable subspaces is replaced he re ,by  a 

multiplicity of images of zr(S"H) in T d. 

The subgroup H is not S-invariant. However,  zr(SmH) is a finite subgroup of 

T ~ for every m. We showed in [7] that given e < 0, and a Jordan measurable set 

A in T ~ of positive measure, there are arbitrarily large m for which every 

translate of Ir(S"H(k)) is e-uniformly distributed in A for all k > 0 .  Now 

7r(SmH(k))=~r(S"~H) for all k > 0 .  Since Ir(S"+kH)=Tr(SmS~(H)D 

rr(S'~H(k)), we conclude that 1r(S'*~H) is a union of cosets of ~r(SmH(k)), 
and hence easily that zr(S'H(k)) is e-uniformly distributed in A for all 

sufficiently large m and all k > 0. 

To prove that S obeys weak specification, let e >0 .  Choose k such that 

d i a m H ( - k , k ) <  e. Let M(e) be chosen greater than 2k and such that for 

m >= M(e) we have that every translate of zr(Sm-~H(k)) is e-uniformly dis- 

tributed in ~rB(e). Let g, E G (1 < i ~ r), and let a~ =< b~ < �9 �9 �9 < a, =< b, with 
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a, - b~-i >= M(e). Let d~ = b, - a,, and C~ = g, + B(e)~)  H( - k - d, k). Then as 

before we have 

diam SJC~ < e (0 <- j <-_ d~, 1 <= i <- r), 

and since SB (e) = B (e), 

S~ = S~ + B ( e ) ( ~ ) H ( -  k, k + d,). 

The proof will work as before if we can show the following analogue of Lemma 

6.4. We need that if m >= M(e), g l ~  G, g2~ G, n > 0 ,  p > 0 ,  then 

S m [g,+ B ( e ) ( ~ ) H ( -  k ,k  + n)] n [g :+ B ( e ) ~ ) H ( -  k - p , k ) ]  

contains a set of positive measure of the form F ~ ) H ( - k - p ,  k + n + m), 

where F Cg2+ B(e).  Now S ' H ( - k ,  k + n)= S"-~H(2k + n), so every trans- 

late of r r ( S ' H ( -  k, k + n)) is e-uniformly distributed in IrB(e). It follows that 

there is an h ~E H such that 

[S"g, + B (e )ED(S"H( -  k, k + n)+ h)] O [g2+ B(e)~I) H ( -  k - p ,  k)] 

has positive measure. Now m>=M(e)>2k.  Hence - k - p < k < m - k <  

k + n + m ,  sothat 

( S ' H ( -  k,k + n)+ h ) n  H ( -  k - p , k )  

= ( H ( m  - k , k  + n + m ) + h ) n H ( - k - p , h )  

is a union of cosets of H ( -  k - p, k + n + m). The existence of the desired F 

then follows. 

w 7. Assembling the pieces 

We are now ready to prove the Splitting Theorem. We first prove it for 

automorphisms of totally disconnected groups, then in general. 

LEMMA 7.1. Ergodic automorphisms of totally disconnected compact groups 

are skew split. 

PROOF. A compact abelian group is totally disconnected if and only if its dual 

is a torsion group. We shall prove the result first when the dual is annihilated by 

multiplication by a prime p (i.e. the dual is a p-group), and then obtain the 

general case from this. 

So assume that S is an ergodic automorphism of a group G whose dual f l  is a 

p-group. If Zp denotes the field Z/pZ, and R is the ring Zp[x ,x  -1] of 
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polynomials in x and x -~ with coefficients in Zp, then R acts on via the dual 

automorphism T of S by 

( ~. ajxJ)'to = ~ ajTJto (to~O). 
i - - r a  i ' - m  

Since Z~ is a field, R is a principal ideal domain (primality of p is crucial here). 

Let {f~i} be an increasing sequence of finitely generated R-submodules of 

whose union is 1). Using ergodicity of S, we showed in [7, w 6] that each lqj is a 

free R-module.  Thus So~n~ is a product of p-shifts, and hence by Lemma 6.1 

obeys weak specification. Since ~j ,,~ f~,N~*~ = 0, so by Lemma 4.1, S obeys 

weak specification. By Theorem 4.2, S also skew splits. 

We now turn to the general torsion case. Let S be an ergodic automorphism of 

G with dual automorphism T of the torsion dual 12. If 12(p) = {y E 12 : p~y = 0 

for some n} is the p-primary component of f~, then fl  = @~II(p), the sum being 

taken over all primes. The Splitting Theorem is preserved under direct products, 

so it suffices to assume II = fl(p) for some p. Let 12" = {y : p " y  = 0}, so 12" 7 1"~, 

and fl  ~ = 0. We claim that T is aperiodic on each lq"+~/f~ ". For if y ~ 12,.t and 

Tky = y + to for some to E 1~", then T ~ ( p " y ) =  p ' y .  Aperiodicity of T forces 

p"y = 0, i.e. y E I~", establishing our claim. Let H,  = (l'~n) l, so that each H,  is 

S-invariant, Ho = G, and H,  ",~0. Since T is aperiodic on the p-group l~"*~/l) ", 

its dual Su./m., is ergodic, and hence by the above it skew splits. By Lemma 5.3, 

S also does, completing the proof. Notice how different arguments were needed 

to handle the inverse limits corresponding to the {l~j} and to 

the {~'}. 

PROOF OF THE SPLITTING THEOREM. Let S be an ergodic automorphism of G 

with dual automorphism T of the dual F. Let fl be the torsion subgroup of F. 

Then fl  is T-invariant, and T is aperiodic on F/l). For if T~y = y + to, to E f l ,  

there is an n such that nto = 0. Then Tk(ny) = ny, and aperiodicity of T forces 

ny = 0. 

Now Lemma 7.1 shows that if H = i l l ,  then Sore skew splits, and we have just 

checked that Su is ergodic on the subgroup H whose dual F/12 is torsion-free. 

Thus by Lemma 5.2, it suffices to establish the following. 

LEMMA 7.2. Ergodic automorphisms of groups whose dual is torsion-free are 
skew split. 

PROOF. The first part imitates the torsion case, but with a different coefficient 
ring for the module. 
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Let $ be an ergodic automorphism of G with aperiodic dual automorphism T 

of the torsion-free dual F. As in [7, w 7], F is a subgroup of F t~) Q, and T extends 

to a Q-linear aperiodic map of F @ Q. By Lemma 5.1, it is enough to prove the 

result for the dual of this extension, i.e. we may assume that F is a rational vector 

space. 

Let R = Q [ x , x  -~] act on F by 

ajx j �9 y = aiTJy (a  i E Q ,  "y E F).  
j i-- ,n 

Then F becomes an R-module over the principal ideal domain R. Let F, denote 

the R-torsion submodule {y E F:g(x )y  = 0 for some g E R}. 

We first show that S restricted to G/F~ skew splits. 

For a monic polynomial f ( x ) E  Q[x] that is irreducible over Q, let F ( f ) =  

{3' E F ,  :f(x)"~, = 0  for some n}. Since R is principal, F, = ~)tF(/),  where the 

sum is over the irreducible monic polynomials in Q[x] (the analogue of the 

p-primary decomposition of torsion groups). Thus we need only consider the 

case F, = F ( / ) =  A for some irreducible f. 

Let F, = {y E A : / ( x ) " y  =0}, so that F, ./ 'A. Now F,+ , /F ,  is annihilated by 

f(x),  and T is aperiodic on this quotient. An inverse limit argument as in the 

torsion case shows that we need only prove the result for Ft, i.e. we can assume 

that [(x)A = 0 (so that A is analogous to a p-group). 

Let {A.} be a sequence of finitely generated R-submodules of & increasing to 

A. Each A. is a finite-dimensional rational vector space on which the minimal 

polynomial of T is f(x). Since [(x) is irreducible, by the rational canonical form, 
A. splits into a direct sum O Ej of T-invariant subspaces on which the matrix of 

T is the companion matrix C(/ )  of [(x). If we could show that the dual of TE, 

obeys weak specification, then the dual of Ta. would also. By Lemma 4.1, the 

dual of the limit Ta = T would obey weak specification, and hence S would skew 

split. 

Thus we are reduced to the case when T has matrix C0  r) on Q~. Let y E Qd, 

and B be the group generated by {TJy : jE Z] .  Let B, = (n !)-I B, so that 

B, ,~ Qa. Now B, is generated by (n !)-17 under T, so the dual of Ta. is an 

irreducible solenoidal automorphism, and thus obeys weak specification by 

Theorem 6.5. By Lemma 4.1, weak specification is preserved under inverse 

limits, so that the dual of T obeys weak specification. 

The result of what we have done so far is to show that the dual of the 

restriction of T to the R-torsion submodule F, skew splits. 

Note that T is aperiodic on F/F,. For suppose y E F and T~y = y + y, with 
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~/, E F,. There is a g(x )E  R such that g(x)y, = 0. Then T ~ (g(x)3~) = g(x)? ,  and 

aperiodicity of T forces g(x)3~ = 0, i.e. y E F,. 

Thus, using Lemma 5.2, we can complete the proof of the lemma by showing 

that if $ is ergodic on G, and the dual is free over the ring R, then S skew splits. 

Let {F. } be a sequence of finitely generated R -submodules of F increasing to 

F. Since R is principal, a finitely generated torsion-free R -module is free. Hence 

F, = RT~ + �9 �9 �9 + R~,~, where {TI, �9 �9 ", Tk } is a free basis for F,. Hence the dual of 

the restriction of T to F. is a product of k group shifts on (~, and thus obeys 

weak specification. Using the preservation of weak specification under inverse 

limits, we see that $ also obeys weak specification, hence skew splits. 
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